Question: -

Let ABC be a triangle with incentre I and inradius r. Let D, E, F be the feet of the perpendiculars from I to the sides BC, CA and AB, respectively. If r_1 , r_2 and r_3 are the radii of circles inscribed in the quadrilaterals AFIE, BDIF and CEID respectively, then prove that

$$\frac{r_1}{r-r_1} + \frac{r_2}{r-r_2} + \frac{r_3}{r-r_3} = \frac{r_1 r_2 r_3}{\left(r-r_1\right) \left(r-r_2\right) \left(r-r_3\right)}. \tag{2000 3M}$$

Solution: -

The quadrilateral HEKJ is a square, because all four angles are right angles and JK = JH.

Therefore,
$$HE = JK = r_1$$
 and $IE = r$ [given] \Rightarrow $IH = r - r_1$

Now, in right angled ΔIHJ ,

$$\angle JIH = \pi/2 - A/2$$

[:
$$\angle IEA = 90^{\circ}$$
, $\angle IAE = A/2$ and $\angle JIH = \angle AIE$]

In ΔJIH ,

$$\tan\left(\frac{\pi}{2} - \frac{A}{2}\right) = \frac{r_1}{r - r_1} \Rightarrow \cot\frac{A}{2} = \frac{r_1}{r - r_1}$$

Similarly,
$$\cot \frac{B}{2} = \frac{r_2}{r - r_2}$$
 and $\cot \frac{C}{2} = \frac{r_3}{r - r_3}$

On adding above results, we get

$$\cot A/2 + \cot B/2 + \cot C/2$$

$$= \cot A/2 \cot B/2 \cot C/2$$

$$\Rightarrow \frac{r_1}{r - r_1} + \frac{r_2}{r - r_2} + \frac{r_3}{r - r_3} = \frac{r_1 r_2 r_3}{(r - r_1) (r - r_2) (r - r_3)}$$